0 JBC
↳1 JBC2FIG (⇒)
↳2 JBCTerminationGraph
↳3 FIGtoITRSProof (⇒)
↳4 AND
↳5 IDP
↳6 IDPNonInfProof (⇒)
↳7 AND
↳8 IDP
↳9 IDependencyGraphProof (⇔)
↳10 TRUE
↳11 IDP
↳12 IDependencyGraphProof (⇔)
↳13 TRUE
↳14 IDP
↳15 IDPNonInfProof (⇒)
↳16 AND
↳17 IDP
↳18 IDependencyGraphProof (⇔)
↳19 TRUE
↳20 IDP
↳21 IDependencyGraphProof (⇔)
↳22 TRUE
public class CAppE {
CAppE next;
public static void main(String[] args) {
Random.args = args;
CAppE list = createList();
cappE(Random.random());
}
public static void cappE(int j) {
CAppE a = new CAppE();
if (j > 0) {
a.appE(j);
while (a.next == null) {}
}
}
public void appE(int i) {
if (next == null) {
if (i <= 0) {
return;
} else {
next = new CAppE();
}
i--;
}
next.appE(i);
}
public static CAppE createList() {
CAppE result = null;
int length = Random.random();
while (length > 0) {
result = new CAppE(result);
length--;
}
return result;
}
public CAppE() {
this.next = null;
}
public CAppE(CAppE n) {
this.next = n;
}
}
class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
Generated 25 rules for P and 9 rules for R.
Combined rules. Obtained 1 rules for P and 3 rules for R.
Filtered ground terms:
757_0_appE_FieldAccess(x1, x2) → 757_0_appE_FieldAccess(x2)
Cond_757_0_appE_FieldAccess(x1, x2, x3) → Cond_757_0_appE_FieldAccess(x1, x3)
874_0_appE_Return(x1) → 874_0_appE_Return
821_0_appE_Return(x1) → 821_0_appE_Return
768_0_appE_Return(x1, x2) → 768_0_appE_Return
Combined rules. Obtained 1 rules for P and 3 rules for R.
Finished conversion. Obtained 1 rules for P and 3 rules for R. System has predefined symbols.
Generated 17 rules for P and 3 rules for R.
Combined rules. Obtained 1 rules for P and 1 rules for R.
Filtered ground terms:
366_0_createList_LE(x1, x2, x3) → 366_0_createList_LE(x2, x3)
Cond_366_0_createList_LE(x1, x2, x3, x4) → Cond_366_0_createList_LE(x1, x3, x4)
395_0_createList_Return(x1) → 395_0_createList_Return
Filtered duplicate args:
366_0_createList_LE(x1, x2) → 366_0_createList_LE(x2)
Cond_366_0_createList_LE(x1, x2, x3) → Cond_366_0_createList_LE(x1, x3)
Combined rules. Obtained 1 rules for P and 1 rules for R.
Finished conversion. Obtained 1 rules for P and 1 rules for R. System has predefined symbols.
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(0) -> (1), if ((x0[0] > 0 →* TRUE)∧(x0[0] →* x0[1]))
(1) -> (0), if ((x0[1] + -1 →* x0[0]))
(1) (>(x0[0], 0)=TRUE∧x0[0]=x0[1] ⇒ 757_0_APPE_FIELDACCESS(x0[0])≥NonInfC∧757_0_APPE_FIELDACCESS(x0[0])≥COND_757_0_APPE_FIELDACCESS(>(x0[0], 0), x0[0])∧(UIncreasing(COND_757_0_APPE_FIELDACCESS(>(x0[0], 0), x0[0])), ≥))
(2) (>(x0[0], 0)=TRUE ⇒ 757_0_APPE_FIELDACCESS(x0[0])≥NonInfC∧757_0_APPE_FIELDACCESS(x0[0])≥COND_757_0_APPE_FIELDACCESS(>(x0[0], 0), x0[0])∧(UIncreasing(COND_757_0_APPE_FIELDACCESS(>(x0[0], 0), x0[0])), ≥))
(3) (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_757_0_APPE_FIELDACCESS(>(x0[0], 0), x0[0])), ≥)∧[(-1)Bound*bni_12] + [(2)bni_12]x0[0] ≥ 0∧[(-1)bso_13] ≥ 0)
(4) (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_757_0_APPE_FIELDACCESS(>(x0[0], 0), x0[0])), ≥)∧[(-1)Bound*bni_12] + [(2)bni_12]x0[0] ≥ 0∧[(-1)bso_13] ≥ 0)
(5) (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_757_0_APPE_FIELDACCESS(>(x0[0], 0), x0[0])), ≥)∧[(-1)Bound*bni_12] + [(2)bni_12]x0[0] ≥ 0∧[(-1)bso_13] ≥ 0)
(6) (x0[0] ≥ 0 ⇒ (UIncreasing(COND_757_0_APPE_FIELDACCESS(>(x0[0], 0), x0[0])), ≥)∧[(-1)Bound*bni_12 + (2)bni_12] + [(2)bni_12]x0[0] ≥ 0∧[(-1)bso_13] ≥ 0)
(7) (COND_757_0_APPE_FIELDACCESS(TRUE, x0[1])≥NonInfC∧COND_757_0_APPE_FIELDACCESS(TRUE, x0[1])≥757_0_APPE_FIELDACCESS(+(x0[1], -1))∧(UIncreasing(757_0_APPE_FIELDACCESS(+(x0[1], -1))), ≥))
(8) ((UIncreasing(757_0_APPE_FIELDACCESS(+(x0[1], -1))), ≥)∧[2 + (-1)bso_15] ≥ 0)
(9) ((UIncreasing(757_0_APPE_FIELDACCESS(+(x0[1], -1))), ≥)∧[2 + (-1)bso_15] ≥ 0)
(10) ((UIncreasing(757_0_APPE_FIELDACCESS(+(x0[1], -1))), ≥)∧[2 + (-1)bso_15] ≥ 0)
(11) ((UIncreasing(757_0_APPE_FIELDACCESS(+(x0[1], -1))), ≥)∧0 = 0∧[2 + (-1)bso_15] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(807_1_appE_InvokeMethod(x1, x2)) = [-1]
POL(768_0_appE_Return) = [-1]
POL(0) = 0
POL(821_0_appE_Return) = [-1]
POL(874_0_appE_Return) = [-1]
POL(757_0_APPE_FIELDACCESS(x1)) = [2]x1
POL(COND_757_0_APPE_FIELDACCESS(x1, x2)) = [2]x2
POL(>(x1, x2)) = [-1]
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
COND_757_0_APPE_FIELDACCESS(TRUE, x0[1]) → 757_0_APPE_FIELDACCESS(+(x0[1], -1))
757_0_APPE_FIELDACCESS(x0[0]) → COND_757_0_APPE_FIELDACCESS(>(x0[0], 0), x0[0])
757_0_APPE_FIELDACCESS(x0[0]) → COND_757_0_APPE_FIELDACCESS(>(x0[0], 0), x0[0])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(0) -> (1), if ((x0[0] > 0 →* TRUE)∧(x0[0] →* x0[1]))
(1) -> (0), if ((x0[1] + -1 →* x0[0]))
(1) (>(x0[0], 0)=TRUE∧x0[0]=x0[1] ⇒ 366_0_CREATELIST_LE(x0[0])≥NonInfC∧366_0_CREATELIST_LE(x0[0])≥COND_366_0_CREATELIST_LE(>(x0[0], 0), x0[0])∧(UIncreasing(COND_366_0_CREATELIST_LE(>(x0[0], 0), x0[0])), ≥))
(2) (>(x0[0], 0)=TRUE ⇒ 366_0_CREATELIST_LE(x0[0])≥NonInfC∧366_0_CREATELIST_LE(x0[0])≥COND_366_0_CREATELIST_LE(>(x0[0], 0), x0[0])∧(UIncreasing(COND_366_0_CREATELIST_LE(>(x0[0], 0), x0[0])), ≥))
(3) (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_366_0_CREATELIST_LE(>(x0[0], 0), x0[0])), ≥)∧[(-1)Bound*bni_10] + [(2)bni_10]x0[0] ≥ 0∧[(-1)bso_11] ≥ 0)
(4) (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_366_0_CREATELIST_LE(>(x0[0], 0), x0[0])), ≥)∧[(-1)Bound*bni_10] + [(2)bni_10]x0[0] ≥ 0∧[(-1)bso_11] ≥ 0)
(5) (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_366_0_CREATELIST_LE(>(x0[0], 0), x0[0])), ≥)∧[(-1)Bound*bni_10] + [(2)bni_10]x0[0] ≥ 0∧[(-1)bso_11] ≥ 0)
(6) (x0[0] ≥ 0 ⇒ (UIncreasing(COND_366_0_CREATELIST_LE(>(x0[0], 0), x0[0])), ≥)∧[(-1)Bound*bni_10 + (2)bni_10] + [(2)bni_10]x0[0] ≥ 0∧[(-1)bso_11] ≥ 0)
(7) (COND_366_0_CREATELIST_LE(TRUE, x0[1])≥NonInfC∧COND_366_0_CREATELIST_LE(TRUE, x0[1])≥366_0_CREATELIST_LE(+(x0[1], -1))∧(UIncreasing(366_0_CREATELIST_LE(+(x0[1], -1))), ≥))
(8) ((UIncreasing(366_0_CREATELIST_LE(+(x0[1], -1))), ≥)∧[2 + (-1)bso_13] ≥ 0)
(9) ((UIncreasing(366_0_CREATELIST_LE(+(x0[1], -1))), ≥)∧[2 + (-1)bso_13] ≥ 0)
(10) ((UIncreasing(366_0_CREATELIST_LE(+(x0[1], -1))), ≥)∧[2 + (-1)bso_13] ≥ 0)
(11) ((UIncreasing(366_0_CREATELIST_LE(+(x0[1], -1))), ≥)∧0 = 0∧[2 + (-1)bso_13] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(366_0_createList_LE(x1)) = [-1]
POL(0) = 0
POL(395_0_createList_Return) = [-1]
POL(366_0_CREATELIST_LE(x1)) = [2]x1
POL(COND_366_0_CREATELIST_LE(x1, x2)) = [2]x2
POL(>(x1, x2)) = [-1]
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
COND_366_0_CREATELIST_LE(TRUE, x0[1]) → 366_0_CREATELIST_LE(+(x0[1], -1))
366_0_CREATELIST_LE(x0[0]) → COND_366_0_CREATELIST_LE(>(x0[0], 0), x0[0])
366_0_CREATELIST_LE(x0[0]) → COND_366_0_CREATELIST_LE(>(x0[0], 0), x0[0])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer